翻訳と辞書 |
Multi-wavelength anomalous dispersion : ウィキペディア英語版 | Multi-wavelength anomalous dispersion Multi-wavelength anomalous diffraction (sometimes Multi-wavelength anomalous dispersion; abbreviated MAD) is a technique used in X-ray crystallography that facilitates the determination of the three-dimensional structure of biological macromolecules (e.g. DNA, drug receptors) via solution of the phase problem. This method doesn't need two crystal structures (one native and one with heavy atom) for a unique phase solution. Instead anomalous diffraction is recorded at different wavelengths of coherent X-ray light at a synchrotron facility. MAD was developed by Wayne Hendrickson while working as a postdoctoral researcher under Jerome Karle at the United States Naval Research Laboratory. The mathematics upon which MAD (and progenitor Single wavelength anomalous dispersion) were based were developed by Jerome Karle, work for which he was awarded the 1985 Nobel Prize in Chemistry (along with Herbert Hauptman). == See also ==
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Multi-wavelength anomalous dispersion」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|